
34  JET

JET Volume 17 (2024) p.p. 34-45
Issue 4, 2024

Type of article: 1.02 
http://www.fe.um.si/si/jet.htm

A REVIEW OF ARTIFICIAL INTELLIGENCE 
IN NUCLEAR POWER PLANTS
PREGLED UPORABE UMETNE 

INTELIGENCE V JEDRSKIH 
ELEKTRARNAH
Nejc Friškovec1R, Dalibor Igrec11

Keywords: Artificial Intelligence, Machine Learning, Supervised Learning, Unsupervised Learning, 
nuclear power plant, maintenance

Abstract
Nuclear power plants are recognised as complex systems, where maintenance is critical for 
ensuring safety and operational stability. Time-based preventive maintenance programmes are 
employed in most nuclear power plants, relying on periodic inspections to prevent equipment 
failures. However, this method is considered resource-intensive and not always efficient. An 
alternative is offered by Artificial Intelligence and condition-based maintenance, which allow 
early fault detection, reduce unnecessary maintenance tasks, and lower operational costs. 
The potential of Artificial Intelligence in nuclear power plants is vast, ranging from operational 
improvements to predictive maintenance. Techniques such as Supervised and Unsupervised 
Learning are highlighted as essential tools for fault detection, pattern recognition, and predictive 
modelling. In Supervised Learning, known input-output pairs are used to train models, while 
Unsupervised Learning is employed to identify hidden patterns in unlabelled data, which is 
particularly useful in the large, unstructured datasets found commonly in nuclear power plants. 
The challenges in integrating Artificial Intelligence into nuclear power plant operations shall 
be noted, including the lack of standardised procedures for selecting and applying algorithms. 
Despite these challenges, AI-driven tools, including Deep Learning and hybrid models, have 
shown promising results in fault detection and prediction in nuclear power plants. These 
advancements support the broader goal of improving safety and operational efficiency. In 
conclusion, although Artificial Intelligence has not yet been adopted fully across all nuclear 
power plants, it is seen as a promising advancement for the future of nuclear energy operations. 
Its implementation enhances fault detection, reduces operational risks, and ensures more 
reliable energy production.
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Povzetek
Jedrske elektrarne so poznane kot kompleksni sistemi, njihovo vzdrževanje pa je ključno za 
zagotavljanje varnosti in zanesljivega obratovanja. Trenutno se v jedrskih elektrarnah uporablja 
princip časovno zasnovanega vzdrževanja, ki temelji na periodičnih pregledih za preprečevanje 
okvar. Pomembno je poudariti, da takšen pristop zahteva veliko porabo sredstev in ni vedno 
učinkovit. Alternativno lahko uvedemo vzdrževanje na podlagi stanja opreme z uporabo 
umetne inteligence ob predčasnem zaznavanju okvar, s čimer zmanjšamo stroške vzdrževanja 
in obratovanja. Potencial umetne inteligence v jedrski industriji je velik, od zagotavljanja 
zanesljive proizvodnje do vzdrževanja. Tehniki, kot sta nadzorovano in nenadzorovano učenje, sta 
izpostavljeni v članku, saj sta ključno orodje za zaznavanje napak, vzorcev in razvoja preventivnih 
modelov. Pri nadzorovanem učenju algoritem učimo z znanimi podatki, ki so klasificirani. 
Pri nenadzorovanem učenju algoritem učimo z veliko količino neklasificiranih podatkov, iz 
katerih model izlušči vzorce in zaznava odstopanje. Za integracijo umetne inteligence v jedrske 
elektrarne pa ostaja še veliko izzivov, med drugim tudi pomanjkanje standardnih pristopov. Ne 
glede na ponujene izzive pa orodja z uporabo umetne inteligence, globokega učenja in hibridnimi 
modeli obetajo pozitivne rezultate na področju zaznavanja napak in napovedovanja v jedrskih 
elektrarnah. Takšni napredki izboljšujejo varnost in omogočajo zanesljivo obratovanje. Čeprav 
umetna inteligenca še ni bila temeljno vpeljana v jedrsko industrijo, prikazuje pozitivne napredke 
za njeno prihodnost. Njena implementacija povečuje zaznavanje napak, zmanjšuje obratovalna 
tveganja ter zagotavlja stabilno in zanesljivo proizvodnjo električne energije. 

1 INTRODUCTION
The use of Artificial Intelligence (AI) is on the rise in both the public and private sectors. As interest 
in this technology grows, the U.S. Nuclear Regulatory Commission has recognised this trend and 
published several documents addressing these topics. These publications serve as guidelines 
for the application of AI in nuclear power plants (NPP), and evaluate the current utilisation of 
these technologies within the industry [1]. Through AI adoption, some licensees aim to meet the 
requirements set forth in the Code of Federal Regulations. This shift allows for a transition from 
traditional time-based preventive maintenance (PM) methods to more advanced approaches 
facilitated by AI and condition-based maintenance (CBM) [2]. The use of AI is also recognised 
by the International Atomic Energy Agency, which established a working group in mid-2022 to 
research and implement AI in nuclear power. 

It is essential to recognise that NPPs are complex systems composed of various interrelated 
systems and equipment, including electrical, mechanical, instrumentation and control systems. 
These components must operate reliably within specified parameters and require some type 
of maintenance. In most NPPs, PM programmes are implemented, consisting of scheduled 
activities aimed at ensuring the equipment's proper functioning. These PM programmes involve 
periodic inspections, and a systematic approach to record-keeping and scheduling maintenance 
activities. This structured framework helps to maintain equipment integrity and enhance overall 
operational safety [3].

Time-based preventive maintenance activities could, potentially, be replaced by CBM if faults are 
detected in advance. However, fault detection presents a complex challenge, particularly in large 
systems like NPPs. A significant issue arises when the volume of data collected is as extensive as 
that found in these facilities, making it difficult for manual systems to process and analyse all the 
available information effectively [2].
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It is important to note that the data collected in NPPs are categorised into two main types: 
process instrumentation and control data, and, periodically, measured maintenance data. The 
first type, often called online monitoring (OLM), encompasses the plant's critical and non-critical 
parameters. These data are displayed in the control room, enabling the operators to monitor 
plant performance and health while being accessible to other personnel. The second type of 
data consist of measurements taken during outages and periodic equipment check-ups. These 
periodically gathered data play a vital role in maintaining the reliability and safety of the plant's 
operations. These data types form the foundation for effective PM strategies and operational 
decision-making in NPPs [4].

This paper outlines the data-gathering process in NPPs and elaborates on its significance. Chapter 
3 discusses the most used advanced computational tools for AI. It is important to note that 
advancements in this field could potentially lead to significant improvements in the safety and 
operational reliability of NPPs. These technologies have the potential to decrease the number of 
faults and reduce operational costs greatly.

Chapter 4 focuses on the application of AI and Machine Learning (ML) in NPPs. The use of these 
technologies is increasing in various areas, including plant safety and security assessments, 
degradation modelling, fault diagnosis, prognosis, and overall plant operation and maintenance. 
By integrating AI and ML, NPPs can enhance their operational efficiency and safety measures, 
paving the way for a more reliable energy future.

2 DATA GATHERED IN NUCLEAR POWER PLANTS
The data collected in commercially operated NPPs are divided into two categories: process 
instruments and control data, and periodically measured data from maintenance activities. The 
OLM data include plant parameters for individual systems and their components, which are 
crucial for ensuring the plant’s safe and reliable operation [4]. These data are displayed in the 
control room on various screens and alarm panels, while some can be retrieved by the operating 
crew from the local panel. Given the enormous volume of data collected, processing them can 
become challenging, especially during accidents or abnormal operations. In such situations, the 
operators in the main control room follow established procedures designed to guide the crew 
through these critical and stressful steps. Their priority is to secure the safety of the reactor core 
and ensure a safe shutdown, all while minimising the risk of human error [5]. 

The OLM data are, typically, stored in large databases with limited sampling intervals, often set 
to one minute, allowing for efficient monitoring of the system`s performance history. These 
data can then be extracted from the database for further analysis and simulations, enabling the 
engineers to gain insights into the plant's operational status. In short, the OLM data are used to 
evaluate the health and reliability of the NPP processes, systems, and equipment [6].

In contrast, the second type of data rely on periodically gathered information from specific 
PM programmes, which include measurements of component parameters that may indicate 
the overall health of the components. These measurements can be taken through electrical or 
mechanical assessments, varying from once per cycle, to more or less frequently, thus providing 
critical insights into the condition of the components. Such evaluations are essential, as they can 
reflect the operational integrity of the components directly, potentially signalling a failure, or a 
state nearing failure [7].
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Both types of data are instrumental in detecting deviations from stable and reliable operation 
within specific components and systems. However, with process instruments and control data, 
challenges arise from the sheer volume and complexity of the information collected, making 
manual analysis often inadequate for identifying significant deviations. To address this, alarm 
and trip values are established for specific measurements, offering a simplified approach to 
monitoring component states. While effective in alerting operators to faults, this method tends 
to react only after issues have manifested, necessitating timely intervention. In nuclear power 
plants, alarm thresholds are set conservatively at lower levels, to ensure that operators are 
notified promptly, enabling them to take the necessary precautions before situations escalate. 
On the other hand, periodically gathered data are typically evaluated by field professionals, 
who conduct thorough assessments of the components based on this information, allowing for 
informed maintenance decisions, and enhancing the overall safety and reliability of the plant.

A simple dataset collected from a motor-gearbox-pump skid will be examined for easier 
understanding. Typically, when a medium-voltage motor is involved with a larger pump, a 
comprehensive set of data is collected to indicate the skid's running parameters. For the electric 
motor, the temperature of the stator is monitored, often utilising six PT100 sensors or similar 
devices, with two sensors embedded in each phase at the hottest points. During the 1970s, the 
standard insulation system used for motors was Class B, which allows for a temperature rise of 
up to 80°C, as defined by the NEMA MG1 Standards.

In such horizontal machines, sleeve bearings made from Babbitt material with temperature 
monitoring are employed commonly, permitting operating temperatures to reach 130°C. Vibration 
monitoring is also implemented frequently, to track the vibrations of the bearings or housing, 
ensuring they remain within the maximum accepted values. Additionally, the temperatures and 
vibrations of the gearbox and pump are monitored, with operational values defined clearly. 
The system operates by transporting fluid at a specific temperature, so the temperatures and 
pressures at both the discharge and suction sides of the pump are measured typically.

With known operating parameters provided by the original equipment manufacturer and insights 
gained from operational experience, the limits of the system are established and adhered to 
throughout its operation. In cases of parameter deviations, or when alarm or trip values are 
reached, the skid is required to shut down, prompting the initiation of corrective maintenance. 
Such events can lead to economic consequences and impact the reliability of the plant and its 
systems. In NPPs each critical system is equipped with backup trains, to ensure that nuclear 
safety and plant reliability are not compromised by minor defects. However, even simple defects 
can diminish plant reliability, and introduce transients into the continuous operational cycle. 
Each transient can have specific effects on the plant, including necessitating shutdowns.

3 ADVANCED COMPUTATIONAL TOOLS
Advanced computational tools such as Artificial Intelligence, Machine Learning, Deep Learning 
(DL), and others in NPPs are on the rise, especially in health and reliability assessment. This 
chapter focuses on the advanced computational tools that form the backbone of AI applications in 
nuclear power plants. These tools, ranging from ML algorithms and neural networks to advanced 
simulations and probabilistic risk assessment models, offer robust platforms for addressing the 
unique challenges faced by nuclear energy systems. By leveraging cutting edge computational 
techniques, nuclear power plants can enhance their operational resilience, reduce human error, 
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and anticipate failures before they occur. while maintaining strict regulatory compliance and 
safety standards. The chapter will delve into the specific categories of AI driven tools, their 
architectures, and their implementation strategies in the Nuclear domain.

3.1 Statistics and Computational Tools 
Before going further into computational tools, it is essential to understand the core difference 
between statistics and computational tools. Statistics is a branch of mathematics, whereas 
computational tools such as AI, ML, and DL are subfields of advanced computing. Statistics focuses 
primarily on data collection, analysis, interpretation, presentation, and organisation. Its purpose 
is to uncover patterns, relationships, and trends within the given data, and draw conclusions 
based on a representative sample. Typically, statistics are applied to smaller datasets, and rely on 
mathematical methods to interpret and understand the data. By contrast, computational tools 
like AI and ML often handle vast amounts of data, leveraging algorithms to automate decision-
making, predictions and other tasks, without requiring explicit human programming for every 
scenario. [8].

3.2 Artificial Intelligence and Machine Learning
AI is a field of Computer Science focused on developing advanced software systems designed to 
perceive their environment and learn to perform actions autonomously. ML, as a subfield of AI, 
allows machines to be trained using historical data. In ML systems, patterns, rules, or insights are 
identified from the collected data, which are then applied to make predictions or decisions [9].

A variety of approaches and techniques are encompassed within AI, including rule-based systems, 
search algorithms, and more advanced methods like Natural Language Processing, Robotics, and 
Computer Vision. In contrast, as previously mentioned, ML relies on algorithms trained to make 
predictions 

• Supervised Learning,
• Unsupervised Learning,
• Reinforcement Learning,
• Recommender systems.

Deep Learning, a specialised subfield of ML, utilises multiple layers of neural networks to address 
complex problems. The primary distinction between AI and ML lies in the fact that, while ML 
focuses specifically on learning from data, AI encompasses a broader range of techniques, 
including those that do not necessarily involve data-driven learning.

In this context, AI and ML are often used together, but it is important to note their differences 
and specific areas of application.

3.2.1 Supervised Learning
Supervised Learning is a type of AI learning that involves using training data with known input 
and output values. The observed data are input into the model along with the expected output 
values, allowing the model to be trained accurately. Once the training process is completed, 
the model is expected to predict outputs based on the new inputs with a certain degree of 
uncertainty. Various algorithms are used widely in Supervised Learning, including [11]:
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Artificial Neural Networks (ANNs): These networks are composed of three types of layers, with 
each layer consisting of nodes, also known as neurons, as illustrated in Figure 1. Typically, a neural 
network includes an input, output, and multiple hidden layers. The layers are interconnected, 
and the nodes are associated with weights, representing each connection's significance. These 
weights are adjusted throughout the learning process. The number of inputs is determined by 
the dimensions of the input data, while the number of hidden layers and nodes defines the 
complexity of the model. The more complex the model, the greater its ability to capture intricate 
patterns in the data [12].

Figure 1: Simple Artificial Neural Network

Feedforward Neural Networks (FFNs): FFNs are the simplest type of Artificial Neural Networks. 
They consist of layers of nodes (neurons) that are connected through weights. In an FFN, the 
information travels in a single direction, from the input layer to the output layer, without looping 
back. These networks are used commonly in both regression and classification tasks [13].

Convolutional Neural Networks (CNNs): CNNs are designed specifically for processing grid-
like data, such as images. They learn the spatial hierarchies of features automatically by using 
convolutional layers. These layers apply filters to the input data to capture important features 
like edges, textures and shapes, making CNNs highly effective for image classification, object 
detection and similar tasks [14]. CNNs were used in data diagnostics through images created 
from the data generated from large amounts of data gathered in NPPs [15].

Recurrent Neural Networks (RNNs): RNNs are distinguished by their ability to handle sequential 
data, as they have connections that form directed cycles. This allows them to retain information 
from previous inputs, making them suitable for time series analysis, and tasks involving sequential 
data like Natural Language Processing. RNNs use backpropagation through time, an optimisation 
algorithm that enables faster learning by adjusting weights efficiently based on errors from 
previous steps [16].

In addition to the algorithms mentioned, other methods are also used commonly, such as 
Decision Trees (DTs). These aim to create a tree-like model that predicts the output values based 
on a series of simple, predefined rules extracted from the features of the data. Random forests 
were developed to address the limitations of DTs, particularly the issue of overfitting. Overfitting 
occurs when a model performs exceptionally well on the training data, but fails to generalise 

A review of artificial intelligence in nuclear power plants



40  JET

to new, unseen data [17]. Another important algorithm is the Support Vector Machine (SVM), 
used for classification and regression tasks. SVMs work by constructing a set of hyperplanes 
that separate different classes of data samples optimally. The goal is to maximise the margin 
between the classes, to improve the model's prediction accuracy and robustness.3.2.2 
Unsupervised Learning

Unlike Supervised Learning, Unsupervised Learning is used to train models on large amounts 
of data where the label of the data is unknown. Unsupervised Learning is considered a highly 
promising method in AI, as labelling vast amounts of training data is often difficult. This allows 
models to be trained without human involvement or supervision. Additionally, one key advantage 
of these models is that, even in the early stages of their development, insight into the structure 
of the model can be gained. Similar to Supervised Learning, there are also various algorithms 
used in Unsupervised Learning: 

Clustering analysis: This method enables data to be classified into branches and clusters, ensuring 
that the data within each cluster are more closely related than data from different clusters. This 
definition is based on the understanding that some data points exhibit greater similarity than 
others. Most clustering algorithms operate using numerical attributes, allowing similarity to be 
described through geometric analogies. There are numerous algorithms available for clustering 
data, including K-means, Spectral Clustering, Hierarchical Clustering, and more. Each of these 
algorithms employs distinct methodologies, such as partitional, hierarchical, density-based, 
grid-based, or model-based. By utilising these various approaches, clustering techniques can 
organise and analyse data effectively, revealing patterns and relationships that might otherwise 
go unnoticed [18].

Dimensionality Reduction: These algorithms are used to transform high-dimensional data into 
low-dimensional data when dealing with big data. It is important to note that this reduction 
process should not result in the loss of meaningful properties of the original data. In terms of 
data classification, these methods can be applied in various ways, such as creating superlinear 
traceable classification schemes, reducing the variance of classifiers, and removing noise. 
Traditionally, one of the most commonly used linear techniques is Principal Component 
Analysis (PCA). This method constructs a low-dimensional dataset, that retains as much of the 
original data's variability as possible by identifying a linear basis for reduced dimensionality. 
In recent years, more nonlinear techniques have been introduced, including global methods, 
multidimensional scaling, autoencoders, and Isomap, among others [19].

3.2.3 Reinforcement Learning
Reinforcement Learning is a learning approach involving the interaction of Artificial Intelligence 
with a dynamic environment. This technique focuses on learning sequential decision-making in 
complex problems and is inspired by the trial-and-error learning process observed in humans. 
Unlike Supervised Learning, where models learn from labelled data, Reinforcement Learning 
operates through feedback in the form of rewards or penalties, which are given based on the 
actions taken by the agent. This feedback mechanism allows the agent to learn and adapt over 
time, ultimately improving its performance in decision-making tasks [20].].
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4 AN OVERVIEW OF ARTIFICIAL INTELLIGENCE AND MA-
CHINE LEARNING IN NUCLEAR POWER PLANTS

The fault detection methods are classified as model-based, signal-based and data-driven-based, 
and are analysed from on-line data. The method used most commonly is signal-based, and it is 
used for fault detection based on alarm and trip values. The model-based analysis is also well 
established, and they use output values from models and compare them with real-time on-line 
data. The data-based method is the most complex one, as it uses the historical data to learn. 
Through AI, the models are trained, and are capable of making predictions [21].

Many different types of algorithms can be employed in nuclear power plants, depending on the 
specific purpose of the task. For instance, models based on classification algorithms should be 
implemented when AI is utilised to analyse surface images to detect cracks in steel or concrete 
structures. In cases where large amounts of unstructured data, such as logs from operational 
experiences and OLM are available, unsupervised learning algorithms could potentially be 
utilised, particularly those based on clustering techniques.

However, a notable downside of this approach is that there are currently no established procedures 
for determining and incorporating the most suitable algorithm for each specific task. This lack 
of systematic guidance may hinder the effectiveness of algorithm selection and application in 
various scenarios within the nuclear power sector. Further challenges include handling missing 
data in vast datasets, ensuring sufficient training data quality, and the high cost of implementing 
AI systems, particularly in a legacy nuclear power plant infrastructure. Additionally, integrating AI 
technologies into existing NPP systems can pose significant technical and financial hurdles that 
require careful planning and investment.

4.1  Artificial Intelligence in nuclear power plant operation
The use of AI in operational contexts is welcomed highly, as operators must handle large amounts 
of data during both normal and abnormal operations. Numerous studies have employed 
computational data to assist in training predictive models. Given that NPPs typically operate in a 
stable manner, training models for specific faults and testing their detection capabilities can be 
challenging. The generated data originate from models of NPPs that are known to have specific 
faults [22, 23].

Prediction models were utilised to analyse the operations of a small light water reactor facility at 
Oregon State University, where positive results were reported. Despite the model's complexity, it 
learned them effectively and applied the reactor's features to make predictions. However, some 
behaviours remained undetected by the network [24]. 

Naimi et al. applied Machine Learning techniques to identify faults in NPPs, focusing initially on 
the detection of various faulty scenarios using neural networks. Subsequently, they employed 
K-Nearest Neighbours (KNN), SVM, and ensemble-based fault diagnosis methods for comparison. 
Among all the models tested, the KNN algorithm was identified as the most accurate and cost-
efficient, although all the models were able to detect the presented faults [25]. 

A fault diagnostics method based on a semi-supervised classification approach was described by 
Ma and Jiang, who utilised data from operational NPPs in conjunction with data from a training 
simulator [26]. Young-Kuo et al. proposed a hybrid model that integrates PCA, signed directed 
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graphs, and Elman Neural Networks for fault detection, fault isolation and severity estimation. 
Each component of this hybrid model contributes unique advantages, providing a robust 
foundation for future research in this area [27].
In recent years, hybrid models have been proposed for the operational analysis of NPPs. This 
trend can be attributed to the fact that individual models often possess specific strengths, and 
their integration allows for a more comprehensive approach to fault diagnostics and operational 
efficiency.

4.2 Artificial Intelligence in nuclear power plant maintenance   
As mentioned, three methods of fault detection are used, and data-based methods are the most 
promising ones for AI applications. Nuclear power plants are critical facilities that need to run 
safely and within their parameters. Every deviation from normal operation can have an impact 
on the facility, environment, and economy of the plant. For normal operation, the plant needs to 
be well maintained; typically, the most successful plant runs on PM with weekly or daily routine 
check-ups on the equipment, or with periodic works on the components. As PM programmes are 
well established in NPPs, the only downside of these is their economic impact. The upgrade to 
PM would be (CBM), which would be viable when a fault detection system would be in place with 
close to 100% certainty. With CBM in place, unnecessary maintenance operations would not take 
place, and the cost would be reduced [28]. 

Data gathered from temperature, vibration and other sensors could be used for Unsupervised 
Learning with SVM or other algorithms [29]. Seker et al. studied RNNs for analysing a 5HP motor 
through spectral analysis in a coherent manner and neural networks. It was studied that, through 
backpropagation of the Elman’s RNN, this model brings advantages to the concepts [30]. Qian 
and Liu studied four deep learning models, Deep-FFN, CNN, GRNN, and CRNN, for fault diagnosis 
of rotating machines, specifically bearings. After their study, those simple models were not able 
to extract the fault features accurately [31]. In another study, Qian and Liu developed a deep 
reinforcement learning that converges more slowly than typical deep learning models that have 
better stability. They show that, no matter if the data samples are small or large, the model will 
react and learn better if we interact with the model [32].  

5 CONCLUSION 
As mentioned throughout the article, the most important property of nuclear power plants is 
their safe and reliable operation. This can be achieved by following industry regulations and 
recommendations. It is essential that operational, maintenance and other procedures are 
established and aligned with the latest Standards and regulations. These procedures should be 
adhered to by personnel, and human errors must be minimised.

Even when procedures are followed, faults may occur due to human errors or random machine 
failures. Some machine faults have the potential to be detected beforehand but are often ignored, 
misinterpreted, or overlooked because of the vast amount of data available. With the help of AI 
and well-trained models, these faults could be detected in advance and subsequently prevented.

In the nuclear industry, AI is beginning to gain recognition, and some regulations have been 
established by the U.S. Nuclear Regulatory Commission. However, the use of AI remains an 
unfamiliar approach for many traditional NPP operators and personnel, as there are significant 
safety and operational risks involved.
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A thorough study of AI and Machine Learning is necessary to train these models to a level 
of certainty that can earn the trust of the nuclear industry. It is important to note that these 
methods would not automatically regulate the plant but would instead serve as an alarm 
system for operators and other personnel, prompting them to respond to various indications. 
This ensures that human oversight remains central, with AI acting as a decision-support tool to 
enhance safety and operational reliability. It is also important to note that the use of AI in NPPs 
requires an interdisciplinary cooperation of computer scientists, nuclear engineers, regulatory 
subjects, and management for its successful implementation. 
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Nomenclature
(Symbols) (Symbol meaning)

AI Artificial Intelligence

CNN Convolutional Neural Networks

DT Decision Tree

FFN Feedforward Neural Networks

KNN K-Nearest Neighbor

ML Machine Learning

NPP Nuclear Power Plant

OLM On-line monitoring 

PCA Principal Component Analysis

RNN Recurrent Neural Networks

SVM Support Vector Machines


